A positivity preserving strategy for entropy stable discontinuous Galerkin discretizations of the compressible Euler and Navier-Stokes equations
نویسندگان
چکیده
High-order entropy-stable discontinuous Galerkin methods for the compressible Euler and Navier-Stokes equations require positivity of thermodynamic quantities in order to guarantee their well-posedness. In this work, we introduce a limiting strategy discretizations constructed by blending high solutions with low positivity-preserving discretization. The proposed discretization is semi-discretely entropy stable, preserving equations. Numerical experiments confirm accuracy robustness strategy.
منابع مشابه
On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations
We construct a local Lax-Friedrichs type positivity-preserving flux for compressible Navier-Stokes equations, which can be easily extended to high dimensions for generic forms of equations of state, shear stress tensor and heat flux. With this positivity-preserving flux, any finite volume type schemes including discontinuous Galerkin (DG) schemes with strong stability preserving Runge-Kutta tim...
متن کاملKinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations
Centered numerical fluxes can be constructed for compressible Euler equations which preserve kinetic energy in the semi-discrete finite volume scheme. The essential feature is that the momentum flux should be of the form f m j+ 1 2 = p̃j+ 1 2 +uj+ 1 2 f ρ j+ 2 where uj+ 2 = (uj+uj+1)/2 and p̃j+ 1 2 , f ρ j+ 1 2 are any consistent approximations to the pressure and the mass flux. This scheme thus ...
متن کاملA Hybridizable Discontinuous Galerkin Method for the Compressible Euler and Navier-Stokes Equations
In this paper, we present a Hybridizable Discontinuous Galerkin (HDG) method for the solution of the compressible Euler and Navier-Stokes equations. The method is devised by using the discontinuous Galerkin approximation with a special choice of the numerical fluxes and weakly imposing the continuity of the normal component of the numerical fluxes across the element interfaces. This allows the ...
متن کاملMultigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations
Multigrid algorithms are developed for systems arising from high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations on unstructured meshes. The algorithms are based on coupling both pand h-multigrid (ph-multigrid) methods which are used in non-linear or linear forms, and either directly as solvers or as preconditioners to a Newton-Krylov method. The perform...
متن کاملPseudo-time stepping methods for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations
The space-time discontinuous Galerkin discretization of the compressible NavierStokes equations results in a non-linear system of algebraic equations, which we solve with a local pseudo-time stepping method. Explicit Runge-Kutta methods developed for the Euler equations are unsuitable for this purpose as a severe stability constraint linked to the viscous part of the equations must be satisfied...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2023
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2022.111850